
WINSMITH

Introduction

Pages 1 - 2

How to Select

Page 3

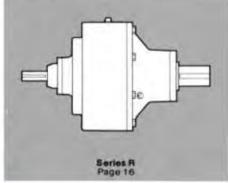
Service Factors

Page 4

Selection Chart

Pages 6-7

Design Data


CROSS SECTION, PARTS INDEX, DIMENSION DATA, SHAFT ARRANGEMENTS, WEIGHTS

Reducer Rating Charts

Reducer No.	Page	Reducer No.	Page
1	18	30-31	20
7	18	40 - 41	20
10-11	19	50-51	
20-21	19	60 - 61	21

THE WINSMITH PLANETARY...WHAT IT IS

ANY RATIO OF REDUCTION..., from about 1.1 to 1 up to 50,000 to 1 in a single stage and in the same housing, can be had in this quiet-running Planetary Helical Gear Speed Reducer to obtain smooth, positive power transmission.

Unusually compact from No. 1H thru No. 61H, these straight-line, efficient speed reduction units are anti-friction bearing equipped. Gears and shafts, in fact all wearing parts, are of specially selected and treated alloy steels. Winsmith Planetary Reducers are in daily use in almost every conceivable phase of industrial service and can be had in sizes to transmit from fractional to over 80 input horse-power.

DISTINCTLY DIFFERENT FROM ORDINARY PLANETARY GEARING

The Winsmith Planetary Reducer, in details of design, resembles the ordinary planetary system in little but general shape. There have been retained, however, such advanlages of the ordinary planetary system of gearing as greater load carrying capacity with smoother operation because more teeth are in action; larger reductions possible in a given space, offering a striking compactness, longer transmission radius, minimizing tooth pressure for a given torque load

Positioning of gears ... tooth alignment ... even distribution of load, are all important to load carrying capacity, to smoothness of operation and to service life. In the ordinary planetary system, three planetary gears are usually employed to obtain maximum transmission of power, and because the reaction of the three planetary gears to each other serves to lessen annular stresses on main bearings.

It is here that the importance of extreme accuracy in production of ordinary planetary systems becomes evident. Perfect load distribution, which requires simultaneous contact of all driving teeth, demands absolute accuracy because the gears in the ordinary planetary system are in a fixed position relative to each other without any possibility of load equalization through compensated positioning. In the ordinary planetary system, slight inaccuracies in positioning of the mounting studs in the driven plate a little irregularity of gear tooth indexing in cutting or a small variation in tooth thickness, can and often does result in one planetary gear instead of all three taking the load, with consequent premature failure of the reducer.

EVEN DISTRIBUTION OF LOAD ... THRU THE UNIFIED PLANETARY ELEMENT

The primary and secondary planetary gears of the Winsmith Planetary Helical Gear Reducer are made integral and combined in a planetary frame of ductile iron, to form a Complete Unified Planetary Element. This design acts to preserve tooth alignment, yet it should be noted that the Unified Planetary Element has no connection with the reducer housing, and that the Planetary Frame carries no part of the load. The power is transmitted and all of the load carried solely through the gears. The Planetary Frame in fact the complete unified element is supported only by the planetary gears and their case hardened and ground steel journals which turn in special sintered bronze impregnated with teflon and lead.

If required to do so, through gradual operating wear, or because of slight inaccuracies, the Unified Planetary Element will automatically float into position which guarantees equalized load distribution so that all three sets of planetary gears do an equal share of the work throughout the life of the Winsmith Reducer. It is apparent that the Unified Planetary Element . . . free to float . . . rides on a cushion of oil between the planetary and internal gear teeth.

 Unified Planetary Element, complete with primary and secondary planetary gears.

The value of this floating feature is reflected in the constantly maintained smoothness of operation and in the quiet-running equalized load distribution throughout the operating life of the reducer.

1.1 TO 1 ... OR 50,000 TO 1 RATIO ... IN THE SAME HOUSING

Important though maintenance of equalized load distribution is, it is but one of the superior leatures of the Winsmith Planetary Reducer. Reference to the illustrations on pages 1 and 2 will show that the economy of parts is outstanding. Moreover, the parts shown are never increased in number regardless of the reduction required . . whether 1.1 to 1 or 50,000 to 1 ratio . . overall dimensions of the reducer of a given size always remain the same. Such ratios of reduction as these, just a few taken from many case histories, can be provided for in a Winsmith Planetary Reducer of a given size without a single change in general overall dimensions:

For the No. 51 ... 5 to 1 ... 818 to 1 ... 1,945 to 1 ... 3,974 to 1 ... 18,174 to 1 ... 40,489 to 1, etc. For the No. 41 ... 5.04 to 1 ... 1,023 to 1 ... 1,492 to 1 ... 2,413 to 1 ... 3,054 to 1 ... 6,178 to 1 ... 22,258 to 1 ... 28,185 to 1, etc.

HIGH EFFICIENCY ... LONG LIFE

Economy of parts, cut tooth Helical Gears, and antifriction bearings all add up to high efficiency minimum wear and resulting long life. Such characteristics are inherent in the Winsmith Helical Gear Planetary Speed Reducer and are proven by hundreds of installations operating day in and day out in all kinds of service, under a great variety of conditions, indoors and out, 24 hours daily, from coast to coast in the United States and Canada.

WINSMITH PLANETARY SPEED REDUCERS DESIGN AND CONSTRUCTION

WINSMITH PLANETARY GEARING

All gears in all sizes and types of Winsmith Planetary Speed Reducers are Quiet-Running ... Helical ... Gears of 15° Helix-Angle, cut on modern Fellows Gear Shapers

The High Speed Pinion and Shaft, integral, is machined from SAE 8620 steel or equal with teeth cut in the shaft. Thus the shaft and pinion are in one piece as illustrated. Of course, it is hardened to resist wear.

The Planetary Gears are case hardened, for maximum strength and wear resistance. The hardened and ground planetary gear journals turn in the special bushings, of sintered bronze impregnated with teflon and lead mounted in the planetary frame. The frame is of ductile iron.

internal ring gears ... primary and secondary are of case hardened for maximum strength and wear resistance.

. Alloy steel primary and secondary internal ring gears

OTHER COMPONENT PARTS

The Output or Slow Speed Shaft and Low Speed Gear-Web are illustrated below. The shaft is through hardened and ground to a close degree of accuracy. The gear web is of ductile iron for all reducers.

Bearings to support the input and output shafts are Tapered Roller Bearings for all sizes and types of Winsmith Planetary Speed Reducers. Two opposed bearings support the radial load and take the thrust on each shaft.

Housing ... Housing Cover ... Bearing Caps are of a close-grained cast iron, thoroughly blasted and cleaned inside and out. Upon assembly of the reducer, the outside is adequately covered with grey enamel.

Oil Seals, used to keep oil in and dust out, are commonly known as chevron shape or type. The sealing ring is of a dense, grainless material, non-porous, tough and resilient, oil and heat resistant, non-abrasive and has a low coefficient of friction. Two seals are used for the output or slow speed shaft of Vertical Type Reducers; likewise for the bottom shall — whether input or output — when a Horizontal Type unit is mounted in a side-wall position; and Type — F — when mounted vertically.

· Alloy steel driving pinion and shaft integral

ASSEMBLY ... INSPECTION ... TESTS

All component parts are made and machined in a welllighted, modern plant adequately equipped with up-todate general machine tools, automatic grinding and gear
cutting equipment. Those operations which lend themselves to production tooling are performed. with accuracy and uniformity maintained. through the medium
of suitable jigs, gauges and fixtures. Parts are thus interchangeable, reducer size for size and ratio for ratio.

All parts of Winsmith Planetary Speed Reducers are carefully inspected for size and finish before assembly. Each reducer is rigidly tested for conformity to specifications, for correct adjustment of bearings, accurate centering of gears, and correct tooth contact.

Following such static tests, each unit is tested. This final phase of inspection and testing assures you of quiet operation, trouble-free performance, and an acceptable length of operating life, granting that the reducer has been properly selected for load and speed, is carefully installed, accurately aligned with driving and driven equipment, and is reasonably well maintained.

Lubrication . . . is treated in Winsmith Engineering Bulletin "Suggestions for Installation and Lubrication." Send for a copy

SELECTING YOUR PLANETARY SPEED REDUCER

USING THE REDUCER SELECTION CHART ON PAGES 6 - 7 YOU CAN EASILY CHOOSE THE CORRECT SIZE PLANETARY UNIT FOR YOUR PARTICULAR APPLICATION. SIMPLY FOLLOW THE SELECTION PROCEDURE OUTLINED BELOW.

SELECTION PROCEDURE

Example: 8000 in. lbs. of output torque is required to drive a uniformly fed belt conveyor 24 hours per day at an output speed of 20 rpm. Prime Mover=1800 RPM electric motor.

 Determine the appropriate Service Factor for the given application using the AGMA Service Factor Chart (page 4) based on length of service and type of prime mover.

For this example: Service Factor= 1.25

- Calculate the Design Torque by multiplying the required output torque by the service factor.
 For Example: Design Torque=8000 in. lb. x 1.25= 10,000 in. lbs.
- Choose the Output RPM or Ratio on the Selection Chart (1800 RPM input, see Pages 6 - 7) which is closest to

the required Output RPM or Ratio. For Example: Select 20.4 RPM.

4. Select a reducer size corresponding to (a) the lowest Output Torque on the selection chart which is greater than or equal to the Design Torque, and (b) the required Output RPM or Ratio.

For Example: a size 20 or 21 unit is chosen at 10,640 in. lbs. of output torque: See chart below.

Refer to pages 8 - 17 for the specific model reducer that will meet your requirements.

NOTE: IF RELATIVE DIRECTION OF SHAFT ROTATION IS AN IMPORTANT FACTOR, CONSULT THE ROTATION COLUMN ON THE RATING CHARTS (P. 18 - 21) TO CERTIFY DIRECTION OF THE OUTPUT OR SLOW SPEED SHAFT.

See Page 7

OUTPUT RPM	NOMINAL RATIO +5%	UNIT	1	7 H. F. V	10F, V, R 11 H	20 F, V, R 21 H	30 F, V, R 31 H	40 F, V, R 41 H	50 F, V, R 51 H	60 F, V, R 61 H
24.0	70.4	OUTPUT	1995	3805	5086	10376	19285	29169	58758	103424
24.9	72.4	INPUT HP	1,01	1.63	2.44	5.02	8.85	13.92	27.51	49.01
(226)	52.0	OUTPUT	2084	3939	5264	10640	19749	30080	59980	107880
20.4	88.1	INPUT HP	.88	1.45	2.21	4,39	7,70	11.56	22.73	41.07

THE RATIO YOU REQUIRE ... MUST IT BE MATHEMATICALLY EXACT?

If a mathematically exact ratio to an infinite number of decimal places is necessary, be sure to consult us before selecting a ratio as such from those listed on pages 18 to 21.

A number of ratios listed are shown as whole numbers to one decimal place. Example: Ratios of 24.0 to 1, 59.0 to 1, 70.0 to 1 are shown for reducers No. 7VM and No. 10VM. These, and a number of others that are shown as exact ratios to one decimal place (00.0 to 1), are not nec-

essarily mathematically exact to an infinite number of decimal places.

Unusual exact ratios, such as 2-18/19 to 1, 3-23/63 to 1, 3-43/58 to 1 can be furnished. If ratios such as these are necessary, consult our Engineering Dept.

GEARING ONLY SUPPLIED

Gearing only can be supplied to those who want to build their own special housing to incorporate Winsmith Planetary Gearing.

AGMA SERVICE FACTORS

PRIME MOVER	DURATION OF SERVICE	UNIFORM	MODERATE SHOCK	SHOCK
Electric Motor	Occasional – 1/2 hr. per day	1.00	1.00	1.25
	Intermittent – 3 hrs. per day	1.00	1.00	1.50
	8 - 10 hrs. per day	1.00	1.25	1.75
	24 hrs. per day	1.25	1.50	2.00
Multi-Cylinder	Occasional – 1/2 hr. per day	1.00	1.00	1.50
Internal	Intermittent – 3 hrs. per day	1.00	1.25	1.75
Combustion	8 - 10 hrs. per day	1.25	1.50	2.00
Engine	24 hrs. per day	1.50	1.75	2.25
Single Cylinder	Occasional — 1/2 hr. per day	1.00	1.25	1.75
Internal	Intermittent — 3 hrs. per day	1.25	1.50	2.00
Combustion	8 - 10 hrs. per day	1.50	1.75	2.25
Engine	24 hrs. per day	1.75	2.00	2.50

EXPLANATORY NOTES:

- 1. Time specified for intermittent and occasional service refers to total operating time per day.
- 2. Term 'frequent starts and stops' refers to more than 10 20 starts per hour.

Normal starting, or occasional momentary peak loads up to 200% of catalog rating at 1800 R.P.M., 2 - 3 times per day, are permissable. If either of these values are exceeded, a service factor of 2 should be used.

Heavy starting loads may be encountered when the slow speed shaft of the Reducer is direct coupled to larger gears or heavy masses. A service factor of 2-1/2 should be used.

Reversing drives and those subjected to quickly repeated shock loads of unusual or unpredictable intensity, stalling loads, drives that are over-running, or that "wind up" due to quick power stoppage and storage of energy are not covered by these factors. A service factor of 3 is indicated. Each is a problem that should be referred to our Engineering Dept.

CLASSIFICATION OF LOAD

CLASSIFICATION OF LOAD TABLE

U — Uniform Load M — Moderate Shock Load H — Heavy Shock Load Conveyor Belt - Unitormly ted 10 hours per day - Unitorm Load. Service Factor = 1.00

> Non-uniformly fed 10 hours per day - Moderate Shock Load: Service Factor = 1 25

Application		Application		Application				
AGITATORS	10	COMPRESSORS		Over	м			
Pure Liquids	- U	Centrifugal	u	Reciprocativity	H			
Liquids and Solids	M	Lote	BA.	Screw	M			
Liquids - Variable Density	M	fleciprocating*		Shaker	H			
Semi-liquids Variable Density*	M*	Multi-cylinder	M	CRANES and HOISTS				
BLOWERS	24	Single Cylinder	44	Main Hoiste				
Centrifugal	u	CONVEYORS-UNIFORMLY		Heavy Duty	H			
Vane	M	LOADED OR FED		Medium Duty	M			
BREWING and DISTILLING	0	Apron	AL.	Reversing	M			
Botting Machinery	- 1.1	Assembly	M	Skip Hoists	M			
Brew Kettles - Continuous Duty		Birell	II.	Trailing Driver	M*			
Gookers - Continuous Duty		Tlucket	3.0	Bridge Drive	M.			
Mash Tubs - Continuous Duty		Chain	U	CRUSHERS				
Scale Hopper Frequent Starts	M	Flight	U	One	H			
CAN FILLING MACHINES		Over	U	Store	H			
CANE KNIVES	M	Science	11	DREDGES				
CAR DUMPERS	14	CONVEYORS-HEAVY DUTY NOT		Cable Reels	M			
CAR PULLERS - Intermettent Duty	- H	UNIFORMLY FED		Conveyors	M			
CLARIFIERS	U	Apron	N/I	Cutter Head Drives	12			
CLASSIFIERS	M	Assembly	M	Jig Drives	++			
CLAY WORKING MACHINERY		Bett	M		M			
Brick Press.	H	Bucket	M	Maneuvering Winches	40.0			
Briquette Machinii	H	Chain	M	Pumps	M			
Glay Working Machinery	M	Flight	M	Screen Drive	H			
Pag Mill	M	Live Roll (Package)	M	Stackers	M			
		Tree 1 that 1), makes \$61		Litity Winches	M			

CLASSIFICATION OF LOAD TABLE (CONTINUED)

Application		Application		Application	
ELEVATORS		Tray Drive	м	PRINTING PRESSES	U
Bucket-Uniform Load	U	Trimmer Feed	M	PULLERS	~
Bucket-Heavy Load	M	Waste Conveyor	M	Barge Haul	M
Bucket-Continuous	U	MACHINE TOOLS		PUMPS	
Centrifugal Discharge	U	Bending Roll		Centrifugal	U
Escalators	U	"Notching Press—Belt Driven	**	*Proportioning	M
Freight	M	Plate Planer	н	Reciprocating	
Gravity Discharge	U	Punch Press—Gear Driven	н	Single Acting	
Man Lifts**	•••	Tapping Machines	9.5	3 or more Cylinders	M
Passenger**		Other Machine Tools		Double Acting	3.3
Service—Hand Lift	н	Main Drives	м	2 or more Cylinders	M
ANS	140	Auxiliary Drives	U	**Single Acting	33
Centrifugal	м	METAL MILLS		1 or 2 Cylinders	
Cooling Towers	792	Draw Bench—Carriage	н	**Double Acting	
Induced Draft	M	Draw Bench - Main Drive	M	Single Cylinder	U
Forced Draft*		Forming Machines	н	Rotary—Gear Type	U
Induced Draft	M-	"Pinch Dryer & Scrubber		- Lobe, Vane RUBBER INDUSTRY	U
Large (Mine, etc.)*		Rolls, Reversing	м	Mixer	н
Large Industrial*	M.	*Slitters	IVI	*Rubber Calender	м
Light (Small Diameter)	U	Table Conveyors	M	'Rubber Mill (2 or more)	M
Apron	M	Non-Reversing	IVI	'Sheeter	M
Belt	M	*Reversing		"Tire Building Machines	
Disc	Ü	Wire Drawing & Flattening Machine	M	**Tire & Tube Press Openers	
Reciprocating	н	Wire Winding Machine		Tubers and Strainers	м
Screw	M	MILLS, ROTARY TYPE		SEWAGE DISPOSAL EQUIPMENT	
FOOD INDUSTRY	1000	Ball	н	Bar Screens	u
Beet Slicer	M	**Cement Kilns		Chemical Feeders	u
Cereal Cooker	U	Dryers & Coolers	M	Collectors, Circuline or Straightline	Ü
Dough Mixer	M	Kilns	M	Dewatering Screens	м
Meat Grinders	M	Pebble	н	Grit Collectors	U
GENERATORS—(Not Welding)	U	Rod	н	Scum Breakers	M
HAMMER MILLS	H	Tumbling Barrels	н	Slow or Rapid Mixers	м
AUNDRY WASHERS		MIXERS		Sludge Collectors	U
Reversing	M	Concrete Mixers, Continuous	M	Thickeners	M
AUNDRY TUMBLERS	M	Concrete Mixers, Intermittent	U	Vacuum Filters	M
LINE SHAFTS		Constant Density	U	SCREENS	
Heavy Shock Load	H	Variable Density	M	Air Washing	U
Moderate Shock Load	M	OIL INDUSTRY		Rotary-Stone or Gravel	M
Uniform Load	U	Chillers	M	Traveling Water Intake	U
UMBER INDUSTRY		"Oil Well Pumping	**	SLAB PUSHERS	M
Barkers—Hydraulic-Mechanical	M	Paratfin Filter Press	М	STEERING GEAR	M
Burner Conveyor	M	Rotary Kilns	м	STOKERS	U
Chain Saw and Drag Saw	н	PAPER MILLS	22	TEXTILE INDUSTRY	120
Chain Transfer	н	Agitators (Mixers)	м	Batchers	M
Craneway Transfer	н	Barker Auxiliaries, Hydraulic	0.00	Calenders	M
De-Barking Drum	н	Barker, Mechanical	225	*Card Machines Cloth Finishing Machines.	M
Edger Feed	м	Barking Drum *Beater & Pulper	н	(washers, pads, tenters)	
Gang Feed Green Chain	M	Bleacher		(dryers, calenders, etc.)	N
Live Rolls	н	*Calenders	.17	Dry Cans	N
Log Deck	H	Calenders—Super	***	Dryers	M
Log Haul—Incline	Н	Converting Machines, except	115	Dyeing Machinery	M
Log Haul - Well Type	н	Cutters, Platers	335	**Knitting Machines (looms, etc.)	
Log Turning Device	н	Conveyors	4.0	Looms	N
Main Log Conveyor	H	*Couch	0.00	Mangles	N
Off Bearing Rolls	M	Cutters, Platers	0.60	Nappers	N
Planer Feed Chains	M	Cylinders		Pads	M
Planer Floor Chains	M	*Dryers		Range Drives	- 33
Planer Tilting Hoist	M	Felt Stretcher	44.5	Slashers	M
Re-saw Merry-Go-Round Conveyor	M	Felt Whipper	**	Soapers	M
Roll Cases	н	Jordans	44	Spinners	M
Slab Conveyor	Н	Log Haul		Tenter Frames	M
Small Waste Conveyor - Belt	U	*Presses		Washers	M
Small Waste Conveyor Chain	M	Pulp Machines	++	Winders (Other than Batchers)	M
Sorting Table	M	Reel	++	Yarn Preparatory Machines	
Tipple Hoist Conveyor	M	*Stock Chests	4.9	(Cards, Spinners, Stashers, etc.)	N
Tipple Hoist Drive	M	*Suction Roll	++	*WINDLASS	M
	н	Washers and Thickeners		·	

^{*}Classes listed are minimum and normal conditions and are assumed. In view of varying load conditions it is suggested that these applications be carefully reviewed, before final selection is made.

**Check safety codes and refer to factory.

OUTPUT TORQUE AND OUTPUT RPM OR RATIO

See Pages 3 - 5 for selection procedure, service factors and classification of load tables.

All Ratings Stated Are For A.D. M.A. Class I Service

1800 RPM INPUT

DUTPUT RPM	NOMINAL* RATIO ±5%	UNIT	1	7 H, F, V	10F, V, R 11H	20 F, V, R 21 H	30 F, V, R 31H	40F, V, R 41H	50 F, V, R 51H	60 F, V 61 H
	122	OUTPUT	69	154	206	470	762	1225	2459	4136
1200.0	1.5	INPUT	1.47	3.12	4.17	9.39	15.21	23.17	48.15	81.51
2112	144	OUTPUT	82	200	268	636	1017	1634	3307	5506
900.0	2.0	INPUT	1.47	3.12	4.17	9.39	15.21	23.17	48.15	81.51
1755	100	OUTPUT	149	342	457	1081	1710	2758	5442	9314
545.5	3.3	INPUT	1,47	3.12	4.17	9.39	15.21	23.17	48.15	81.51
2000	100	OUTPUT	234	520	695	1607	2609	4016	8353	14170
352,9	5,1	INPUT	1.47	3.12	4.17	9.39	15.21	23.17	48.15	81,51
		OUTPUT	293	643	860	2008	3281	4954	10475	17477
281.3	6.4	INPUT	1.47	3.12	4.17	9.39	15.21	23.17	48.15	81.51
	100	OUTPUT	358	814	1088	2459	3967	6072	12755	21421
227.8	7.9	INPUT	1.47	3.12	4.17	9.39	15.21	23.17	48.15	81.51
TVY S	2.3	OUTPUT	427	1026	1372	2928	4779	7267	15369	25640
185.6	9.7	INPUT	1.47	3.12	4.17	9.39	15,21	23.17	48.15	81.51
0452	1770	OUTPUT	523	1198	1601	3587	5878	9210	19074	3249
153.8	11.7	INPUT	1.47	3.12	4.17	9.39	15.21	23.17	48.15	81.51
121	nester l	OUTPUT		1400	1922	4533	7503	11462	23716	40438
125.0	14.4	INPUT		3.12	4.17	9.39	15,21	23.17	48,15	81.51
22.0	350-1	OUTPUT	860	1821	2434	5895	9151	13749	29947	4849
98.4	18.3	INPUT HP	1.47	3.12	4.17	9.39	15.21	23.17	48.15	81.51
719	1220	OUTPUT	991	2235	2987	6793	10928	16413	34749	5790
83.3	21.6	INPUT	1.47	3.12	4.17	9.39	15.21	23.17	48,15	81.51
		OUTPUT	1204	2590	3462	7584	12740	20051	37835	7022
68.4	26.3	INPUT	1.47	3.00	4.15	9.01	15,00	22.50	44.95	78,58
400	14.7	OUTPUT	1381	2976	3977	8510	14738	21839	43157	7620
57.5	31.3	INPUT	1.41	2.85	3.99	8.47	14.51	22.43	42.45	77.92
	122	OUTPUT	1550	3052	4080	9149	15951	24653	48240	8490
45.3	39.7	INPUT	1,32	2.37	3.39	7.58	12.99	19.79	38.00	67.86
	222	OUTPUT	1800	3450	4611	9696	17119	27009	51413	95468
36.1	49.8	INPUT	1.24	2.09	3.02	6.54	11.27	17.53	33.92	61.63
20.2	- 22	OUTPUT	1902	3615	4832	10150	18244	28262	55168	9780
30.0	60.0	INPUT	1,09	1.85	2.71	5,60	10.44	15.32	29.89	52.72

When placing orders, please use actual ratios on rating pages 18-21. DO NOT PLACE SALES ORDERS USING ABOVE NOMINAL RATIO.

REDUCER SELECTION

OUTPUT TORQUE AND OUTPUT RPM OR RATIO

See Pages 3 - 5 for selection procedure, service factors and classification of load tables.

All Ratings Stated Are For A G.M.A. Class I Service

1800 RPM INPUT

DUTPUT RPM	NOMINAL' RATIO ±5%	UNIT	1	7 H, F, V	10F, V, R 11H	20 F, V, R 21 H	30 F, V, R 31H	40 F. V. R 41 H	50 F, V, R 51 H	60 F, V 61 H
24.0	20.1	OUTPUT	1995	3805	5086	10376	19285	29169	58758	103424
24.9	72.4	INPUT	1.01	1.63	2.44	5.02	8.85	13.92	27.51	49.01
122	100.00	OUTPUT	2084	3939	5264	10640	19749	30080	59980	107880
20.4	88.1	INPUT HP	.88	1.45	2.21	4.39	7.70	11.56	22.73	41.07
Con		OUTPUT	2204	4033	5390	10888	20075	30768	61370	108700
16.6	108.2	INPUT	.79	1.19	1.86	3.73	6.75	10.26	19.69	35.89
trole.	12000	OUTPUT	2347	4085	5460	11085	20569	31507	61730	109700
13,7	131.4	INPUT	72	1.01	1.61	3.29	5.76	8.93	17.24	30.76
135.5	V-rit	OUTPUT TORQUE	2405	4145	5540	11157	20974	32000	62230	111300
11.1	162.7	INPUT	.63	82	1.35	2.80	4.98	7.49	14.82	26.11
	MC/Comb	OUTPUT	2415	4190	5600	11362	21300	32400	63000	113000
8.9	201.5	INPUT	.52	.73	1.23	2.43	4.47	6.44	12.41	22.14
		OUTPUT	2425	4265	5700	11700	21600	32400	63000	113000
7.7	233.1	INPUT	.47	,61	1.06	2.14	3.84	5.81	10.50	20.54
		OUTPUT	2425	4265	5700	11700	21600	32400	63000	113000
6.2	291.7	INPUT HP	.41	-52	92	1.88	3.35	4.79	9.23	16.38
- 5		OUTPUT	2425	4265	5700	11700	21600	32400	63000	+113000
4.9	368.0	INPUT	.35	.44	.80	1.62	2.88	4.19	7.71	14.88
-		OUTPUT	2425	4265	5700	11700	21600	32400	63000	113000
4.1	440.0	INPUT	.30	.37	69	1.39	2.50	3.50	6.59	11.91
t.i	1000	OUTPUT	2425	4265	5700	11700	21600	32400	63000	113000
3,3	553.5	INPUT	.28	.33	.60	1.20	2.09	3.06	5.67	10.34
	100	OUTPUT	2425	4265	5700	11700	21600	+32400	+63000	113000
1.9	926.0	INPUT	25	.33	.50	1.00	2.00	3.00	5.00	★ 7.50
7.5.	(27.50)	OUTPUT	2425	4265	5700	11700	21600	32400	63000	113000
1.4	1279.0	INPUT	.25	33	.50	1.00	2.00	3.00	5.00	★ 7.50
100	12.E.G.	OUTPUT	2425	4265	5700	11700	21600	32400	+63000	113000
1.1	1570.0	INPUT	★ .25	* 33	★ 50	★ 1.00	★ 2.00	★ 3.00	±5.00	★ 7.50
		OUTPUT	2425	4265	5700	11700	+21600	32400	+63000	113000
.96	1875.0	TORQUE INPUT HP	★.25	★.33	±.50	±1.00	±2.00	± 3.00	★ 5.00	± 7.50

^{*}For actual ratio per size, see pages 18-21

 [★] Use of Shear Pin or Torque Controlled Coupling is recommended
 ◆ Actual Ratio is not within 5% of Nominal—See Reducer Ratings Pages 18 - 21

horizontal type planetary reducer

SERIES: H

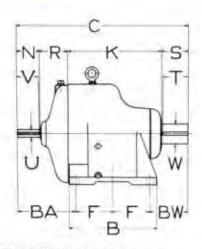
.25 H.P. to 87.11 H.P.

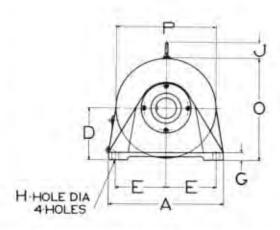
RATIO RANGE -1.5 to approximately 2,000:1

MAX. OUTPUT TORQUE RANGE 50 to 113,000 in. lbs.

For Horsepower, Torque and Overhung Load Ratings—See pages 18 through 21 For Service Factors—See page 4.

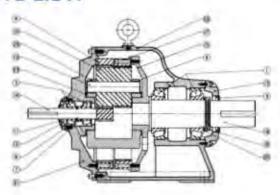
TABLE OF WEIGHTS

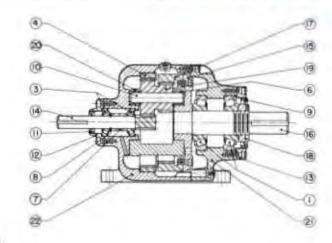

Unit	ìН	7H	1118	21H	31H	41H	51H	61H
Net Weight	27	50	77	130	245	450	710	1500


The Input Shalt may be driven in either direction.

Alloy steel slow speed shalts.

DIMENSIONS:


SPEED REDUCER DIMENSIONS (in inches)


		-	1.7					100		7.1		1		1	100	1.1	High S	peed !	Shoft	- 5	low 5	pend	Shaft
Unit	A	. 8	C	D	E	F	G	H	1	K	0	P	R	BA.	BW	U.	N	V	Keyway	W*	5		Kayway
1H	7	4%	10%	33/14	3	17%	14	16	0	51/16	6 % e	6	2%	49%	27/14	1/2	134	11%	36 x 36	1	134	11/4	14×16
7H	6/2	7%	13/56	35/4	23/2	3%	116	13/11	0	73%	6%	61/2	13%	3	311/16	3/4	13%	134	% × 3/2	134	21/4	2%	80 × 81
11H	9%	634	15	43%	41/4	21/10	3/4	1/4	0	7%	834	814	3	5%	4	3/4	13%	113/4	54×50	114	21/2	27/10	36 × 36
21H	1134	81/6	17%	51/4	51/4	33/4	-34	1/4	21/4	9	10%	9%	3/2	636	4%	1	21/4	2	14 x 1/4	2	23/4	25%	15×14
31H	14%	10%	211/2	6/2	61/2	43%	1	13/14	21/4	113%	1213/10	121/4	41/4	734	43%	1%	21/2	2%	14 * 14	21/2	31/4	33%	36 × 56
41H	1734	1346	2519	8	75	51/2	1%	11/4	2%	14%	16	15%	4160	8%	5%	11/4	3	21%	14×16	3	3%	31/2	34×36
51H	221/4	15%	29%	911/4	10	676	134	13%	3	16%	19%	18%	ô	1034	51/1	2	3%	33%	1/4×1/4	31/2	41/6	4	76 × 36
61H	27	19	39	12/2	12	8	134	17%	4	201/2	25	24%	755	1334	93/4	2%	4	334	36 × 36	5	7	634	11/4×3/6

^{*}Shaft diameter tolerances +.000-,001. For construction purposes send for Certified Dimension Sheets.

horizontal type planetary reducer

PARTS LIST:

PLANETARY SERIES 1H, 11H, 21H, 31H, 41H, 51H, 61H PARTS INDEX

Part No.	Description	Part No.	Description
-1	Slow Speed Bearings	†15	Gear Web
3	High Speed Bearings	116	Slow Speed Shaft
4.	Primary Internal Gaar	17	Secondary Internal Gear
6	Journal Pin Bushings	18	Lock Nut (Slow Speed)
7	Shaft Spacer (High Speed)	19	Integral Planetary Gears
8 7 8 10 11 12 13	Retaining Ring (High Speed)	1000	(Parts 6 and 10 Included
+9	Oil Seal (Slow Speed)	20	Planetary Frame
10	Journal Pins	120A	Unified Planetary Element
-11	Oil Seal (High Speed)	,	(Parts 6, 10, 19, 20)
12	Bearing Cap (High Speed)	21	Housing Cover
13	Bearing Cap (Slow Speed)	22	Housing
14	High Speed Shaft and	===23	Thrust Bearings
-	Pinion Integral	25	Lock Washer (Slow Speed)
		□ 26	Motor Adapter (Not Shown)

*When a Horizontal Type Planetary Reducer is mounted in a side-wall position with shafts vertical, the shaft below — whether input or output — is provided with two (2) oil seals.

tPart 20A is supplied as a completely assembled, Unified Planetary Unit or Element because the planetary gears are made in matched sets to engage matched internal gears.

ICannot be furnished separately.

###Not used in units 1H, 11H, 21H and 61H.

HM Series Only

STANDARD, INVERTED AND SIDEWALL MOUNTINGS:

ADDITIONAL CHARGE IS MADE FOR ALL MOUNTINGS EXCEPT (A)-CONSULT FACTORY

SERIES: HM-HMW (WITH MOTOR)

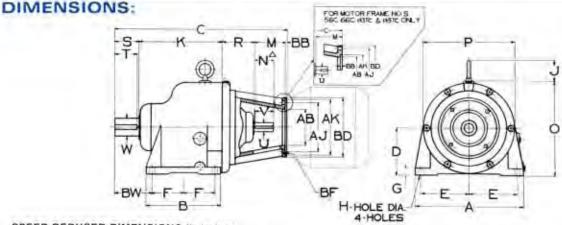
.25 H.P. to 87.11 H.P.
RATIO RANGE 1.5 to approximately 2,000:1
MAX. OUTPUT TORQUE RANGE 50 to 113,000 in. lbs.

For Horsepower, Torque and Overhung Load Ratings—See Pages 18 - 21. For Service Factors—See Page 4.

Any standard "C" Flange Motor may be used. A Flexible Coupling connects the motor to the Input Shaft. Couplings and motors can be furnished and mounted. If customer is mounting motor, motor frame size and coupling size must be specified.

TABLE OF WEIGHTS

Unit	THM	11HM	21HM	31HM	41HM	51HM	61НМ
Net Weight	36	99	152	285	508	B45	1635


The Input Shalt may be driven in either direction.

Alloy steel slow speed shatts.

PARTS INDEX SAME AS HORIZONTAL PLANETARY (Page 9)

SHOVEL BASE AVAILABLE: SEE PAGE 17

SPEED REDUCER DIMENSIONS (in inches)

		1		1				11		1					High 5	peed S	haft		Slow 5	peed	Shaft
Unit	A	В	BW	D	E	F	G	H	1	K	0	P	R	u.	NA	V+	Keywoy	W.	5	T	Keyway
THM	7	41/6	21/4	3%	3	1%	1/2	3/4	0	5%	63/14	۵	2%	14	11/4	11/6	1/8 × 1/4	1	136	134	14 × 1/4
TTHM	93/4	6%	4	41/4	41/4	211/4	36	No.	0	7%	8%	81/4	3	34	1%	19%	% × %	11/2	214	21/4	36 × 36
21HM	1134	81/8	41/6	51/4	51/2	3%	34	1/4	21/4	9	101/4	9%	312	1-	23/4	2	1/4 × 1/8	2	23/4	25/8	14×14
MHIE	143/8	10%	45%	61/2	61/2	43/2	1	13/16	21/4	111%	121%	1234	41/4	136	21/2	23/16	1/4 × 1/2	21/2	31/4	33/14	% × 3/4
41HM	173/4	13%	5%	8	71/2	51/2	1Ke	13/4	23/4	141/2	16	15%	47/4	1%	3	211/1	% = 1/2	3	3%	31/2	34×36
51HM	223/4	153/4	51/14	911/10	10	6%	11/4	15/4	3	16%	19%	185%	6	2	31/4	31/8	1/2×1/4	31/2	41/6	4.	36 × 36
61HM	27	19	93/4	121/2	12	8	136	15%	4	201/2	25	241/2	71/5	23/41	4	3%	36 × 36	5	7	61/4	11/4 × 3/4

^{*}Shaft diameter tolerances +.000, -...001.

It may be necessary to shorten input shaft to provide clearance for motor shaft and coupling.

horizontal type-motorized planetary reducer and gearmotor

DIMENSIONS:

FOR MOTOR FRAME NUMBERS SEC, 143TC AND 145TC ONLY

		1	100	1000		BF	Hole		
Unit	AB	AJ	AK!	88	BD	No.	Size	c	M
THM	4	5%	41/2	×4.	61/2	4	13/2	12	2%
THM	4	51/8	41/2	36	61/2	4	13/12	1611/18	3%
21HM	4	51/4	41/2	No.	61/2	4	13/2	19	33/4
31HM	4	5%	41/2	1/16	61/2	4	1352	221/2	374
41HM	4	51/6	4%	34	61/2	4	13/2	27%	4%
51HM	41/2	.5%	41/2	1/2	73/4	4	17/22	31%	51/4

FOR MOTOR FRAME NUMBERS 182TC, 184TC, 213TC, 215TC, 254TC AND 256TC ONLY

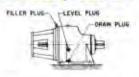
						BF	Hole		
Unit	AB	AJ	AK‡	88	BD	No.	Size	C	M
TIHM	51/8	71/4	81/2	1/4	9	4	17/12	18%	5%
21HM	51/6	71/2	81/2	3/6	9	4	17/12	21/16	5%
31HM	61/4	71/4	81/2	3/10	10	4	17/2	24%	5%
41HM	61/4	714	81/2	36	10	4	13/2	29/10	63/8
SIHM	614	71/2	81/2	34	10	4	17/12	321/6	511/4
61HM	614	71/4	81/2	36	10	4	17/22	41%	61%

FOR MOTOR FRAME NUMBERS 284TC AND 286TC ONLY

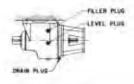
		2	1			BF	Hole		1
Unit	AB	AJ	AKt	88	BD	No.	Size	c	M
31HM	5%	9	101/2	36	111/4	4	13/12	243/4	51%
41HM	53/4	9	101/2	3/4	111/4	4	11/52	29%	63/4
51HM	53/4	9	101/2	34	111/4	4	17/17	32%	61/4
61HM	5%	9	101/2	3%	111/4	4	17/2	42/4	73/6

FOR MOTOR FRAME NUMBERS 324TC AND 326TC ONLY

			-			BF	Hole	1 1	
Unit	AB	AJ	AK!	88	BD	No.	Size	c	M
41HM	8	11	121/2	3/4	14	4	23/22	28%	6
51HM	9	11	121/2	3/4	14	4	11/2	341/16	8%
61HM	9	.11	121/2	3/4	14	4	11/32	43%	8%

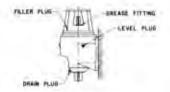

FOR MOTOR FRAME NUMBERS 364TSC AND 365TSC ONLY

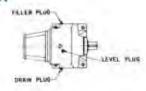
						BF	Hale		
Unit	BA	AJ	AK!	88	BD	No.	Size	c	M
51HM	9	11	121/5	No.	14	8	21/2	34%	85/
61HM	9	11	121/2	3%	14	8	23/2	43%	8%

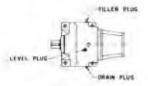

Register tolerances +.001, +.004.

For construction purposes send for Certified Dimension Sheets.

STANDARD, INVERTED AND SIDEWALL MOUNTINGS:


STANDARD MOUNTING A


INVERTED MOUNTING B


SIDEWALL MOUNTING C

SIDEWALL MOUNTING D

SIDEWALL MOUNTING E WITH SHAFTS HORIZONTAL

SIDEWALL MOUNTING F WITH SHAFTS HORIZONTAL

ADDITIONAL CHARGE IS MADE FOR ALL MOUNTINGS EXCEPT (A) - CONSULT FACTORY

flange mounted type planetary reducer

SERIES: F

.25 H.P. to 87.11 H.P.

RATIO RANGE -1.5 to approximately 2,000:1 MAX. OUTPUT TORQUE RANGE 50 to 113,000 in. lbs.

For Horsepower, Torque and Overhung Load Ratings—See Pages 18 through 21 For Service Factors—See Page 4

Unless otherwise specified, the Type "F" Reducer will be furnished for floor mounting. We can furnish this reducer for sidewall, or inverted mounting, however, the required mounting must be specified on your order to enable us to arrange the lubrication fittings properly.

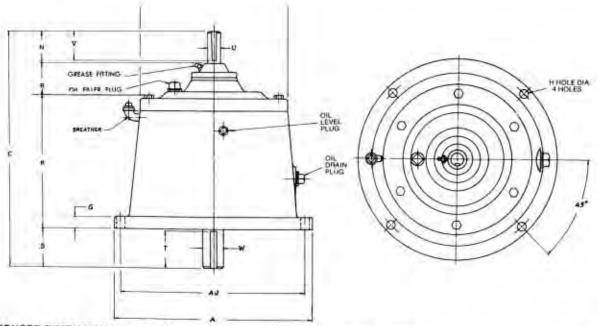
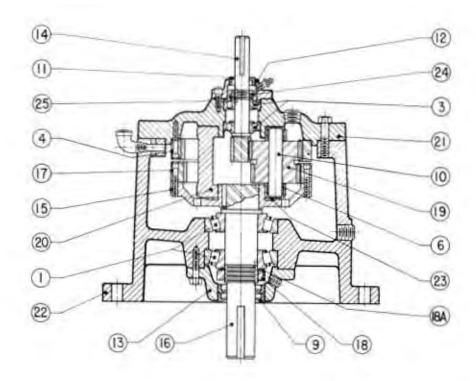

The input shaft may be driven in either direction.

TABLE OF WEIGHTS

Unit	1F	7F	10F	20F	30F	40F	50F	60F
Net Weight	32	85	105	130	280	480	800	1750

Alloy steel slow speed shafts


SPEED REDUCER DIMENSIONS (in inches)

000	170		1							High S	peed She	oft .	-	Slow !	Speed Sh	oft
Unit	A	AJ	BD	C	G	H	K	8	U*	N	V	Keyway	W.	5	T	Keyway
16	9	8	6	103/8	1/2	3/10	5%	2% <u>é</u>	1/2	11/4	11/8	1/8 x 1/4	- 1	11/4	11/4	14×1/4
7F	113%	10%	87/8	141/2	3/4	3/16	8	127/32	3/4	11%	13/4	* × 1/2	11/4	23/4	21/4	₹6 × %2
10F	13	111/2	93/6	14%	3/6	3/10	81/4	127/20	3/4	13%	134	36 × 36	11/4	21/2	21/2	36 × 36
20F	153/8	13%	1134	17%	11/8	%	101/4	2	3/4	21/8	2	16 × 162	21/4	31/2	33/8	1/2×1/4
30F	181/8	161/4	13%	215/2	13/8	11/10	11%	215/2	%	21/2	23/8	1/4×1/6	25%	41/2	41/4	% × %
40F	213/4	191/2	151/2	25	11/4	11/10	131%	2%	11/4	3	21/4	14×1/8	31/4	51/2	51/2	3/4×3/6
50F	261/6	233/4	19%	29%	11/2	13/16	16%	23/4	11/4	31/4	3	% × 3/2	4	63/4	63/4	1 × 14
60F	39	33%	26	34%	2	13%	20%	31/4	23/4	43%	4	% × %	5	61/8	61/4	11/4 × 1/4

^{*}Shaft diameter tolerances +,000 -,001. For construction purposes send for Certified Dimension Sheets.

flange mounted type planetary reducer

PARTS LIST:

Part No.	Description	No. Req. Per Unit	Part No.	Description	No. Req. Per Unit	
1 3 4 6 17 18 9 10 11 12 13 14	Slow Speed Bearings High Speed Bearings Primary Internal Gear Journal Pin Bushings High Speed Spacer (Not Shown) High Speed Retaining Ring (Not Shown Slow Speed Oil Seal Journal Pins High Speed Gil Seal High Speed Bearing Cap Slow Speed Bearing Cap High Speed Pinion	2 1 6 1 1 2 3 1 1 1 1 1 1	17 18 18A 19 20 20A 21 22 23	Planetary Gears (Set of 3) Includes 6 and 10 Planetary Frame	1	*Not used in 1F 1F, 7F, 10F only Not used in 1F, 7F, 10F (A) The base tiange is flush. There is no interfering slow speed shall bearing requiring elevation of the unit by blocking.
15	Gear Web	1	125	High Speed Lock Washer	1	

SERIES: VM-VMW (WITH MOTOR)

.25 H.P. to 87.11 H.P.

RATIO RANGE 1.1:1 to 50,000:1

MAX. OUTPUT TORQUE RANGE 50 to 113,000 in. lbs.

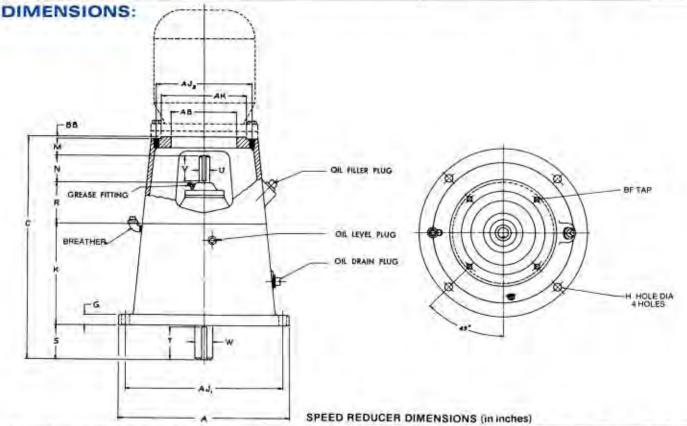

For Horsepower, Torque and Overhung Load Ratings—See pages 18 through 21 For Service Factors—See page 4.

TABLE OF WEIGHTS

Unit	1VM	7VM	10VM	20VM	30VM	40VM	50VM	60VM
Net Weight	36	105	140	245	370	570	960	2600

Alloy steel slows speed shafts

		200	-	100	44		1700								High 5	peed !	Shaft		Slow	Speed	Shaft
Unit	A	AB	AJ,	AJ ₂	AKT	BB	BF	c	G	H	K	M	R	U+	N	V	Keyway	W.	5	T	Keyway
1VM	9	41/4	8	51/8	41/2	36	13/32	12	1/2	3/16	5%	15/8	25/4	1/2	11/4	11/8	1/4 x 1/4	4	11/4	11/4	1/4 × 1/8
7VM	11%	55%	10%	63/4	6	1/8	₹ ₆ -18‡	15%	3/4	%	7	13/2	227/32	3/4	11/4	13/4	16 x 16	11/4	23%	21/4	36 x 1/2
10VM	13	5%	111/2	63/4	6	1/8	%-18‡	16%	1/8	%	71/4	21/32	227/22	3/4	11%	13/4	1/4 × 1/2	11/2	21/2	21/2	36 × 36
20VM	153%	B1/2	131/8	10	9	1/8	1/2-131	20%	11/4	3/6	815/6	25%	3%	3/4	21/8	2	16 × 1/2	214	31/2	33%	1/2 x 1/4
30VM	181/6	81/2	161/4	10	9	1/6	1/2-13‡	221/2	11/6	11/6	10%	11%	31/2	1/6	21/2	23/9	1/4 x 1/8	25/8	41/2	4%6	% × %
40VM	213/4	81/2	191/2	10	9	1/8	1/2-131	26%	11/4	11/6	123/4	11/2	33/4	11/16	3	21/4	1/4 x 1/6	33/10	51/2	51/2	3/4 × 3/8
50VM	261/4	81/2	233/4	121/2	11	1/4	3/4-101	313/4	11/2	13/4	15%	13/4	41/4	11/4	31/4	3	No x 1/2	4	63/4	63/4	1 ×1/2
60VM	39	123/8	333/4	16	14	3/16	34-105	39%	2	15/10	183/6	45%	516	23/4	43/8	4	% × 1/6	5	61/4	61/4	11/4×1/4

^{*}Shaft diameter tolerances +,000 -,001. For construction purposes send for Certified Dimension Sheets. †Register tolerance +.001, -.004.

14 Holes. §8 Holes. #For #1VM only — female register tolerance +.001, +.004.

vertical type-motorized planetary reducer and gearmotor


(A) USE ANY MOTOR—Any Standard Flange-Type Motor of ANY make can be used. If customer is mounting motor, motor frame size and coupling size must be specified.

(B) EASE OF INSTALLATION — The high speed end cover forms an adapter. When in place, one half of the flexible coupling is fitted to the high speed shaft. Then the motor, with other half of coupling in place on motor shaft, is simply bolted to the reducer high speed end adapter.

(C) SIMPLICITY OF MOUNTING — The base flange of the reducer is flush. There is no interfering slow speed shaft bearing requiring elevation of the unit by blocking up.

(D) WINSMITH VERTICAL TYPE REDUCERS — Widely used for agitators, mixing machines, sewage disposal equipment, coolers and overhead conveyors. Heat treated alloy steel gears and shafts.

PARTS LIST:

PARTS INDEX

Part No.	Description	No. Req. Per Unit	Part No.	Description	No. Req. Per Unit
1 3 4 6 17 18 9 10 11 12 13 14 15 16	Slow Speed Bearings High Speed Bearings Primary Internal Gear Journal Pin Bushings High Speed Spacer (Not Shown) High Speed Retaining Ring (Not Shown) Slow Speed Oil Seal Journal Pins High Speed Oil Seal High Speed Bearing Cap Slow Speed Bearing Cap Slow Speed Bearing Cap Slow Speed Bearing Cap Slow Speed Bearing Cap High Speed Bearing Cap High Speed Bearing Cap Slow Speed Shaft Separately	1 1 2 3 1 1	17 18 18A 19 20 20A 21 22 *23 124 125 26	Planetary Gears (Set of 3) Includes 6 and 10	1 1 (1 Set) 1 1 1 1 1 1 1

‡1VM, 7VM, 10VM, Only †Not Used in 1VM, 7VM, 10VM *Not used in 1VM

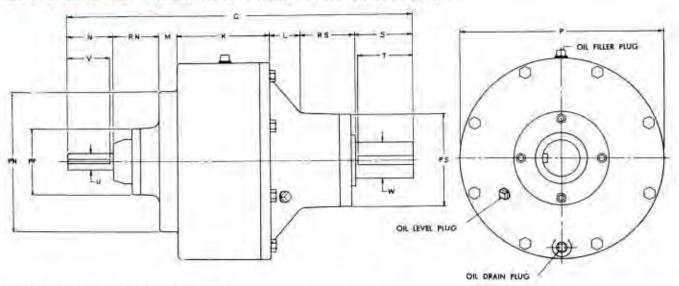
SERIES: R

.25 H.P. to 51.05 H.P.
RATIO RANGE 1.1:1 to 50,000:1
MAX. OUTPUT TORQUE RANGE 50 to 63,000 in. lbs.

For Horsepower, Torque and Overhung Load Ratings—See pages 18 through 21 For Service Factors—See page 4.

TABLE OF WEIGHTS

Unit	18	10R	20R	30R	40R	50R
Net Weight	28	45	75	150	300	575


Alloy steel slow speed shafts

 These reducers are widely used where the high speed shaft, the slow speed shaft and the housing all revolve at different speeds. The reducer used thus gives accurate control through a critical speed range when used with a variable speed drive. The input shaft may be driven in either direction.

NOTE: The following ratings on Round Type Reducers apply only if the housing is held stationary. If the housing is allowed to revolve, or is driven, the ratio, horse-power and output rpm varies. In some cases they are regenerative. Each application of this type should be referred to our engineering department.

PARTS INDEX SAME AS HORIZONTAL PLANETARY (Page 9)

DIMENSIONS: (Consult factory for special methods of supporting unit.)

SPEED REDUCER DIMENSIONS (in inches)

				-	100	10.1			0.71	-		High S	peed Si	oft	12	Slow 5	peed Sh	naft
Unit	C	K	L	M	P	PF	PH	PS	RN	RS	U.	N	V	Keyway	W.	5	T	Keyway
TR	121/8	4	-	2%	6	-	-	31/4	-	3%	1/2	11/4	11/6	1/4 × 3/4	1	13%	11/4	1/4×1/6
10R	131/8	31/4	13%	11/4	73%	21/2	6%	41/8	111/2	23/8	3/4	17/6	13/4	36 × 36	11/2	21/2	23/6	36 × 36
20R	152%	43/4	13/2	13%	81%	3	61/2	41/0	17/6	223/32	3/4	21/6	2	16 × 1/2	15/8	23/4	25%	3/6 × 3/6
30R	181/16	51/2	13%	11/2	11%	3	83%	53%	11%	3	1/8	21/2	23/6	1/4 × 1/4	21/6	31/4	31/8	1/4×1/4
40R	203/2	61/16	25/32	13/2	14%	33/	10	51/2	196	231/20	11/4	3	2%	1/4 × 1/4	2%	3%	31/2	3/4 × 3/4
50R	241/4	7%	21/16	136	181/8	4	12	63/4	134	215/14	11/4	31/4	3	No x No	31/8	4350	41/4	3/4 × 3/6

^{*}Shaft diameter tolerances +.000 -.001. For construction purposes send for Cartified Dimension Sheets.

horizontal type—non-motorized and gearmotor (with shovel base)

SERIES: HS-HSW (WITH MOTOR)

.25 H.P. to 87.11 H.P. RATIO RANGE -1.5 to approximately 2,000:1 MAX. OUTPUT TORQUE RANGE 50 to 113,000 in. lbs.

For Horsepower, Torque and Overhung Load Ratings—See pages 18 through 21 For Service Factors-See page 4.

DIMENSIONS:

REDUCER DIMENSIONS								
Unit	D	R						
1 H5	33/4	2%						
11 HS	41/4	3						
21 HS	51/6	31/2						
31 HS	61/2	4/4						
41 HS	8	4%						
51 HS	91/4	6						
61 HS	121/2	71/2						

TABLE OF WEIGHTS												
p. 72 - U	REDUCER AND SHOVEL BASE											
Frame	1 115	11 HS.	21 HS	21 HS	41 HS	51 HS	61 45					
56	.26	87	140	255	460	770	-					
1431 145T	:36	87	140	255	460	720	1 1					
182T		LOS	121	277	482	742	1532					
213T 215T		100	.161	277	482	7.67	1532					
254T			0-1	230	535	-794	1585					
284T 286T					535	795	1585					
324T 326T						904	1694					

		DIME	NSION	5			MOTOR MOUNTING DIMENSIONS								
			REDUCE	R					2	1000		1.6	52.7		72.1
Frame	1 HS 11 HS	21 HS	31 HS	41 HS	S1 HS	at Hs	"	D,	D	20	E1	M.	A+	u,	
56	17 18%	195%	20%	2116	21%		3	254		3%	23/4	34		25	634
1431	contractions	1500	Anti-	600	443.		4	20		431	417	No.		10	de
145T	17754 . 14 154	1668	30%	31.4	22/4		.5.	215		334	2%	16	2		636
1827	mate	2410	4.0	dall'		det.	435	410	30	100	245	100		437	30
1641	2214	2270	2479	25)%	26	30.75	31/2	514	47.6	51/2	376	794	12	174	200
2131	2000	10. D.	water.	5.07	4.00	400	439	vira		war.	100	160	100	100	-0
2157	23%	23%	23%	20/16	29.4	29/04	7	5%		2/1	474	764	13.	100	779
254T			28%	29%	30%	321%	8%		- are	260		100	Pate		.44
256T			30%	Sittle.	22%	34%	10	1	972	378K	.0.	No.	1726	179	1929
284T				20%	14%	36%	914			40	44	6	400	22.0	14
286T				22/6	34%	37%	111	1		7761	202	%	1294	10%	14
324T					37	3854	70%			500	40	110.	water.	410	14
326T					3812	40%	12	9		876	618	7/14	20%	716	10

1:1	- B.M.	P. SP. PRINCES	NA STATE	
	4	- X		Þ
1				

See page	F8 for	basic	reducer	dimensions.
----------	--------	-------	---------	-------------

				M	MARY ROTO			
RED	UCER	54	1437	1827	213T	254T 236T	284T 384T	3247 3267
1 HS	Y L M U* N Keyway	BNA Talka 12 Talka Nadapatka	12 12 12 12 12 12 12 12 12 12 12 12 12 1					
)1 HS	A A U N Keymop	10% 157% 1% 1% 1% 1%	10% 157% 1% 1% 1% 1%	11 N 20% N N 1% Nachhal W	12% 20% % % 12% %, elign 13%			U
27 115	W U'S	11 1016 14 214 16-14-2	10% (6%) (10	11% 21% 7% 7% 11 616	13% 21% 1% 1% 2% 1/4/6+2			
31 HS	AM OF N Kayway	-21% 17% 15 15 21% Galasztig	11/2 17/4 14 13/4 21/4 15/4/42/54	12% 22% 16 1% 2% 2%	14/5 22/3 74 1/6 2/3 (5/4,27/4	16/4 20/16 1/16 1/16 2/16 1/16 1/16 1/16 1/16 1		

				M	DIOR FRAM	E .		
-	DUCER	56	1437	1831 1841	212f 213T	2547 1561	294T 286T	324T 326T
	Y	1234	1254	14%	1517	30%	1834	-
	M	164	26	150	11/4	114	17.	
H H	8 9.	1/4	104	1%	174	174	194	
	Keyney	16.15.27%	harmarily.	2 4. 1/1. 2"/4	Salar Phi	Nacharina	140 11x2 1/4	
	- T	1424	16/4	15.	16].	17%	10/16	20%
	, W	1952	1975	2474	21/4	35%	21/1	3514
	d W	11/4	166	197	116	2	7.	2
	- N	314	314	21,	774	214	214	314
	Keyway	Kellen J.	NO. 10%	Shalling219	140 2102.5	20 101 1	20.752 3	link all
		11 1		20%	26%	34%	34/4	361
				10	5	116	716	1
61 F	MT.			19.	179	7	1	2%
				214	250	173	236	1 31 31
	Keyway			714 32 - 74	Sta divisit	125044796	130-140-15	his hall

- NOTES: 1. The input shaft may be driven in either direction.
 - 2. Alloy steel slow speed shaft.
- 3. Motor dimensions as shown are open dripproof enclosure. Motors can be furnished open dripproof or enclosed.
- Dimensions D₁ and D₂ will never be less than the value shown. For proper alignment of motor and coupling, shims up to 0.06 may be necessary.
- *5. Shaft diameter tolerances +.000 -.001
- 6. For construction purposes send for certified dimension sheets,

HORSEPOWER, TORQUE, AND OVERHUNG LOAD RATINGS

All ratings stated are for A.G.M.A. Class 1 service.

Tables list mechanical horsepower capacities.

HORIZONTAL TYPE No. 1H & HM

FLANGE TYPE No. 1F

VERTICAL TYPE No. 1VM

ROUND TYPE No. 1R

HORIZONTAL TYPE **FLANGE TYPE** No. 7H No. 7F

> **VERTICAL TYPE** No. 7VM

Ratio of Reduction To 1	Rotation	Input H.P. at 1800 R.P.M. (See Note A)	Output Torque Inch Pounds
1.5	S	1.47	69
2.0	S	1.47	82
3.3	S	1.47	149
5.1	A	1.47	234
6.4	R	1,47	293
7.6	R	1.47	358
9.4	R	1.47	427
11.5	R	1.47	523
18.8	S	1.47	860
21.7	S	1,47	991
26,6	8	1.47	1204
32.1	S	1,41	1381
39.2	S	1,32	1550
49.3	S	1.24	1800
61.2	5	1:09	1902
72.0	S	1.01	1995
87.0	S	.88	2084
109.0	S	.79	2204
130.5	S	.72	2347
161.0	S	.63	2405
211.7	S	.52	2415
244.7	S	.47	2425
299.4	\$.41	2425
386,3	S	.35	2425
495.9	S	.30	2425
556.0	S	.28	2425
952.6	S	20	2425
1331.0	R	.17	2425
1592.0	S	.16*	2425
1958.0	S	-14"	2425

Ratio of Reduction To 1	Rotation	input H.P. at 1800 R.P.M. (See Note A)	Output Torque Inch Pounds
1.5	S	3.12	154
2.0	S	3.12	200
3.2	S	3.12	342
5.1	A .	3.12	520
6.3	R	3.12	643
7.9	R.	3.12	814
10.0	R	3,12	1026
11.7	A	3.12	1198
14.0	A	3.12	1400
17.7	S	3.12	1821
21.8	S	3.12	2235
26.3	S	3.00	2590
31.8	S	2.85	2976
39.5	S	2.37	3052
51,0	S	2.09	3450
60.8	S	1.85	3615
73.0	S	1.63	3805
85.6	S	1.45	3939
108.6	S	1,19	4033
131.7	S	1.01	4085
168.5	S	82	4145
193.1	8	.73	4190
242.3	S	.61	4265
298.0	R.	.52	4265
362.1	S	.44	4265
454.2	s	.37	4265
562.0	S	.32	4265
882.2	A.	.24	4265
1238,0	S	20	4265
1527.3	R	-19*	4265
1790.7	S	19*	4265

		e Overhung Le pacity in Pour		Output Shaft Suspended
	Shaft IR-IVM	Output 1H-1F-II	Up or Down Capacity	
RPM	Lbs.	RPM	Lbs.	In Pounds 1F & 1VM
1800 1200 900 600 500 300 100	50 55 60 70 78 93	500 300 200 150 100 80 60 50	415 468 518 582 612 700 840 900	575 660 735 760 790 825 860 910
		40 30 20 10 & under	950 1000 1035 1160	970 1025 1260 1480

	mum Allow: Chain Pull)				Output Shaft Suspended Load or Thrus	
	ut Shaft	0	ulpul Sha	iff	Up or Down Capacity In Pounds 7H-7F-7VM	
RPM	Pounds	RPM	Pounds	7F & 7VM Pounds		
1800 1200	50 65	500 300	385 445	270 315	700 810	
900	75 95	200	505 550	360 390	920	
500 300	100 125	100	625 665	440 475	1130 1210	
100	200	60 50	720 770	515 550	1310 1390	
		40 30	820 890	580 635	1485 1620	
		20 10 &	1010	715.	1830	
		under	1240	880	2250	

NOTES

- 5 Input and Output Shafts revolve in the same direction.
- R. Input and Output Shafts revolve in opposite directions.
- Use of Shear Pin or Torque Controlled Coupling is recommended
- A. Input Horsepower rating is directly proportional to the input HP rating at 1800 R.P.M. Ratio 5.1 to 1. Input R.P.M. -900. Input H.P. -0.74. The Torque is independent of the speed.

The above Ratings are for 8 to 10 hours daily operation with steady. non-shock loads (Service Factor 1). For other service conditions apply proper service factors as shown on page 4.

NOTES

- 5: Input and Output Shalts revolve in the same direction.
- R. Input and Output Shafts revolve in opposite directions
- Use of Shear Pin or Torque Controlled Coupling is recommended
- A. Input Horsepower rating is directly proportional to the input HP rating at 1800 R.P.M. Ratio 5.1 to 1, input R.P.M. -900 Input H.P. -1.56. The Torque is independent of the speed.

The above Ratings are for 8 to 10 hours daily operation with steady, non-shock loads, (Service Factor 1). For other service conditions apply proper service factors as shown on page 4.

HORIZONTAL TYPE No. VERTICAL 11H & HM TYPE FLANGE TYPE ROUND TYPE No. 10F

1790.7	1527.3	1238.0	882.2	562.0	454.2	362.1	298.0	242.3	193.1	168.5	131.7	108.6	85.6	73.0	60.8	51.0	39.5	31.8	26.3	21.8	17.7	14.0	11.7	10.0	7.9	6.3	5.1	3.2	2.0		Ratio of Reduction To 1
s	D	s	D	s	s	s	20	s	s	S	s	co	S	s	co	co	s	s	co	co	co	D	D	D	D	20	D	s	s	S	Rotation
.30*	.33*	.37	.45	.60	.69	.80	.92	1.06	1.23	1.35	1.61	1.86	2.21	2.44	271	3.02	3.39	3.99	4.15	4.17	4.17	4.17	4.17	4.17	4.17	4.17	4.17	4.17	4.17	4.17	at 1800 R.P.M. (See Note A)
5700	5700	5700	5700	5700	5700	5700	5700	5700	5600	5540	5460	5390	5264	5086	4832	4611	4080	3977	3462	2987	2434	1922	1601	1372	1088	860	695	457	268	206	Output Torque Inch Pounds

5 2	Maximum (or Chain	Allow Pull)	wable Ove Capacity		in Pounds Utput Shaft		
RPM	11	10F	RPM	11	10F		10R
1200	75 115	655	300	1900	370 430		560 560
900	140	75	200	1150	485		635
600	175	95	150	1250	530	50	8
500	190	100	100	1350	600		780
300	215	125	80	1450	640		835
100	335	200	60	1550	700		905
			400	1750	790	- 5	1030
			30	1900	860		1120
			20	2150	970		1270
			under	der 2700	1200		1560

í	-	١
١	-	٠.
•	-	1
ľ	1	٦
ì	1	n

- Input and Output Shafts revolve in the same direction.
- P·DO Input and Output Shafts revolve in opposite directions.
- Use of Shear Pin or Torque Controlled Coupling is recommended. Input Horsepower rating is directly proportional to the
- input HP rating at 1800 R.P.M. Ratio 5.1 to 1, Input R.P.M. -900 Input H.P. 2.08. The Torque is independent of the speed.

The above Ratings are for 8 to 10 hours daily operation with steady, non-shock loads. (Service Factor 1). For other service conditions apply proper service factors as shown on page 4.

11700	.57*	S		1957.5
11700	.64	co		1592.1
11700	.73	co	Ī	1227.0
11/00	.85		Ì	9.798
11/00	1.20	0.00		8.866
00/11	1.39	o co	r	450.2
11700	1.62	co		358.9
11700	1.88	B	Ī	296.0
11700	2.14	co		244.7
11362	2,43	S		199.0
11157	2.80	S		160.9
11085	3.29	co		130.5
10888	3.73	S		109.0
10640	4.39	S		87.0
10376	5.02	co		72.0
10150	5.60	co		62.0
9696	6.54	S		49.3
9149	7.58	S		39.2
8510	8.47	S		32.1
7584	9.01	S		26.6
6793	9.39	co	Ī	21.7
5895	9.39	co e		18.8
4533	9.39	so:		14.5
3587	9.39	D:		11.5
2928	9.39	20		9.3
2459	9.39	D :	Ī	7.9
2008	9.39	20 :		0.4
1607	9.39	20		cn :
1081	9.39	0	ĺ	3.4
636	9.39	co		20
470	9.39	co	1	1.5
Inch Pounds	(See Note A)	(S)		To 1
Output Torque	Input H.P. at 1800 R.P.M.	Rotation at 1	R	Ratio of Reduction
3. ZOR	NO.		. 20	ONI
1	ROUND	LTYPE	ICA.	VERT
o. 20F	No	& HM	121	No. 21H
	1	-		TICOU.

~ 3	laximu or Cha	Maximum Allowable Overhung Load (or Chain Pull) Capacity in Pounds	ble Ove	in Po	Load		Output Shaft Suspended
5	Input Shaft	aft		Output Shaft	Shaft		Up or Down
RPM	21H	20F, VM & R	RPM	21H	20F	20R	In Pounds 20F-20VM-21H
1800	95	95	500	1500	620	910	1250
1200	160	105	300	h740	720	1070	1455
900	200	115	200	1930	815	1200	1645
600	260	125	150	2060	890	1310	1790
500	270	135	00	2250	1000	1480	2030
300	350	160	80	2350	1070	1580	2170
100	500	220	60	2580	1160	1720	2340
1555	202200	The second second	50	2750	1240	1830	2500
			6	2860	1320	1960	2670
			30	3140	1440	2130	2910
	Í		20	3570	1620	2400	3280
			10&	08 4480	2000	2960	4050

NOTES

- Input and Output Shafts revolve in the same direction
- . 70
- Input and Output Shafts revolve in opposite directions.
 Use of Shear Pin or Torque Controlled Coupling is recommended.
 Input Horsepower rating is directly proportional to the input HP rating at 1800 R.P.M. Ratio 5.1 to 1, Input R.P.M. -900

Input H.P.

4.70. The Torque is independent of the speed.

The above Ratings are for 8 to 10 hours daily operation with steady, non-shock loads, (Service Factor 1). For other service conditions apply proper service factors as shown on page 4.

HORSEPOWER, TORQUE, AND OVERHUNG LOAD RATINGS

All ratings stated are for A.G.M.A. Class 1 service.

Tables list mechanical horsepower capacities.

HORIZONTAL TYPE No. 31H & HM

FLANGE TYPE No. 30F

VERTICAL TYPE No. 30VM

ROUND TYPE No. 30R

HORIZONTAL TYPE No. 41H & HM

FLANGE TYPE No. 40F

VERTICAL TYPE No. 40VM

ROUND TYPE No. 40R

Ratio of Reduction To 1	Rotation	Input H.P. at 1800 R.P.M. (See Note A)	Output Torque Inch Pounds
1.5	S	15.21	762
2.0	S	15,21	1017
3.4	S	15.21	1710
5.1	R	15.21	2609
6.5	R	15.21	3281
7.B	R	15,21	3967
9.4	R	15.21	4779
11.6	A	15.21	5878
14.8	R	15.21	7503
18.0	S	15.21	9151
21.5	5	15.21	10928
26.5	S	15.00	12740
32.0	S	14.51	14738
39.2	S	12.99	15951
49.6	S	11.27	17119
57.9	S	10.44	18244
74.3	S	8.85	19285
89.8	S	7.70	19749
107.2	S	6.75	20075
133.6	5	5.76	20569
164,1	S	4.98	20974
191.3	S	4.47	21300
237.2	S	3.84	21600
284.0	8	3,35	21600
349.5	S	2.88	21600
425.7	5	2.50	21600
553.0	R	2.09	21600
964.0	R	1.43	21600
1229.0	S	1.21	21600
1621.8	R	1.03*	21600
2334.5	R	.83*	21600

Ratio of Reduction To 1	Rotation	Input H.P. at 1800 R.P.M. (See Note A)	Output Torque Inch Pounds
1.5	S	23.42	1225
2.0	S	23.42	1634
3.4	S	23.42	2758
5.2	R	23.42	4016
6.4	R	23.42	4954
7.8	FI	23.42	6072
9.4	H H	23.42	7267
11.9	R	23.42	9210
14.2	R	23,42	11462
17.7	S	23.42	13749
21.3	S	23,42	16413
26.6	S	22.75	20051
30,5	S	22,68	21839
39.6	s	20.04	24653
50.0	S	17.78	27009
61.0	S	15.57	28262
70.5	S	14,17	29169
90,5	S	11.81	30080
106.8	S	10,51	30768
129.7	S	9.18	31507
164.1	S	7.74	32000
201.4	S	6.69	32400
230.2	S	6.06	32400
296.0	S	5.04	32400
353.4	S	4.44	32400
450.4	S	3.75	32400
545.0	S	2.31	32400
1023.2	8	2.22	32400
1269.0	S	1.96	32400
1491.8	S	1.79"	32400
1907.B	R	1.58*	32400

M (aximur or Cha	n Allowai in Pull) C	ble Ove	rhung In Po	Load		Output Shaft Suspended
In	put Sh	aft		Outpu	I Shaft		Up or Down
RPM	31H	30F, VM & R	RPM	31H	30F & VM	30R	In Pounds 30F-30VM-31H
1800	180	100	500	2150	780	910	1610
1200	290	115	300	2400	910	1070	1880
900	350	120	200	2700	1030	1200	2120
600	440	135	150	2900	1125	1310	2320
500	475	145	100	3100	1270	1480	2620
300	580	170	80	3250	1360	1580	2800
100	650	235	60 50	3700	1470	1720	3020
10000	1997	1	50	4050	1565	1830	3230
			40	4150	1670	1960	3440
			30	4450	1820	2130	3750
			108	4870	2050	2400	4240
	-		under	6200	2530	2960	5220

		m Allowa in Pull) (Output Shaft Suspended Load or Thrust		
In	put Sh	aft		Outpu	t Shaft		Up or Down		
RPM	41H	40F, VM & R	RPM	41H	40F & VM	40R	In Pounds 40F-40VM-41H		
1800 1200	285 339	145 160	500 300	2500 2950	1360 1580	1020 1185	3040 3540		
900	383 452	175	200	3350 3650	1790	1335	4000 4370		
500 300	484 590	215 245	100	4100 4400	2200 2350	1650 1765	4940 5270		
100	878	340	60 50 -	4800	2550 2720	1910 2035	5710 6090		
			40 30	5400	2900 3160	2170 2365	6500 7080		
==			20	6650	3560	2670	8000		
				8100	4400	3285	9840		

NOTES

- S Input and Output Shafts revolve in the same direction.
- R. Input and Output Shalts revolve in opposite directions.
- *: Use of Shear Pin or Torque Controlled Coupling is recommended.
- Input Horsepower rating is directly proportional to the input HP rating at 1800 R.P.M. Ratio 5.1 to 1, Input R.P.M. -900. Input H.P. -7.6. The Torque is independent of the speed.

The above Ratings are for 8 to 10 hours daily operation with steady, non-shock loads. (Service Factor 1). For other service conditions apply proper service factors as shown on page 4.

NOTES

- S. Input and Output Shafts revolve in the same direction.
- Input and Output Shafts revolve in opposite directions.
- Use of Shear Pin or Torque Controlled Coupling is recommended.
- A: Input Horsepower rating is directly proportional to the input HP rating at 1800 R.P.M. Ratio 5.2 to 1, Input R.P.M. -900. Input H.P -11.71. The Torque is independent of the speed

The above Ratings are for 8 to 10 hours daily operation with steady, non-shock loads (Service Factor 1). For other service conditions apply proper service factors as shown on page 4.

HORIZONTAL TYPE No. 51H & HM No. 50F

VERTICAL TYPE No. 50VM ROUND TYPE
No. 50R

No. 61H & HM No. 60F

VERTICAL TYPE
No. 60VM

Ratio of Reduction To 1	Rotation	Input H.P. at 1800 R.P.M. (See Note A)	Output Torque Inch Pounds
1.5	S	48.90	2459
2.1	S	48.90	3307
3.4	S	48.90	5442
5.2	R	48.90	8353
6.5	R	48.90	10475
7.9	R	48.90	12755
9.5	R	48.90	15369
11.8	R	48.90	19074
14.7	R	48.90	23716
18.6	S	48.90	29947
21.5	S	48.90	34749
25.9	S	45.70	37835
31.6	S	43.20	43157
40.1	S	38.75	48240
48.6	S	34.67	51413
60.4	S	30.64	55168
71.0	S	28.26	58758
90.4	S	23.48	59980
109.6	S	20.44	61370
129.2	S	17.99	61730
156.8	S	15.57	62230
198.1	S	13.16	63000
244.7	S	11.25	63000
290.0	S	9.98	63000
367.2	S	8.46	63000
453.3	s	7.34	63000
557.0	S	6.42	63000
1027.2	R	4.42	63000
1262.0	R	3.95	63000
1661.5	R	3.41*	63000
2234.8	S	2.97*	63000

Ratio of Reduction To 1	Rotation	Input H.P. at 1800 R.P.M. (See Note A)	Output Torque Inch Pounds
1.5	s	83.15	4136
2.0	S	83.15	5506
3.4	S	83.15	9314
5.2	R	83.15	14170
6.4	R	83.15	17477
7.8	R	83.15	21421
9.4	R	83.15	25640
11.9	R	83.15	32494
14.2	R	83.15	40438
17.7	S	83.15	48494
21.3	S	83.15	57907
26.6	S	80.22	70229
30.5	S	79.56	76205
39.6	S	69.50	84909
50.0	S	63.27	95468
61.0	S	54.36	97803
70.5	S	50.65	103424
90.5	S	42.71	107880
106.8	S	37.53	108700
129.7	S	32.40	109700
164.1	S	27.75	111300
201.4	S	23.78	113000
221.4	S	22.18	113000
296.0	S	18.02	113000
335.9	S	16.52	113000
450.4	S	13.55	113000
545.0	S	11.98	113000
971.1	S	8.44	113000
1269.0	S	7.28	113000
1491.8	S	6.69	113000
1907.8	R	5.94	113000

		m Allowa in Pull) C					Output Shaft Suspended Load or Thrust
In	put Sh	aft		Output	Shaft		Up or Down
RPM	51H	50F, VM & R	RPM	51H	50F & VM	50R	In Pounds 50F-50VM-51H
1800 1200	630 968	185 210	500 300	5200 6000	2000 2330	1530 1770	4590 5335
900	1180	225 255	200 150	6700 7500	2640 2880	2020	6040 6585
500 300	1589 1947	275 315	100	8000 8400	3250 3470	2480 2660	7440 7950
100	2809	435	60	9000	3760 4010	2890 3060	8600 9180
			40 30	10000	4280 4660	3280 3570	9800 10670
	1	15 53	20 10 &	12500	5265	3950	12050
			under	15500	6500	4970	14830

	laximum or Chair	Output Shaft Suspended Load or Thrust Up or Down					
Input Shaft			Output Shaft				
RPM	61 H	60F & VM	RPM	61H	60F & VM	In Pounds 60F-60VM-61H	
1800 1200	1150 1550	610 690	500 300	9814 11317	2610 3040	5370 6245	
900 600	1800	745 845	200 150	12559	3430 3750	7065 7710	
500 300	2320 2800	910 1040	100	14960 15870	4230 4520	8710 9300	
100	4000	1450	60 50	16960	4890 5220	10070	
			40 30	19120 20680	5570 6070	11460 12490	
60		TE	20 10 & under	23480	6850 8450	14100	

NOTES

- S: Input and Output Shafts revolve in the same direction.
- R: Input and Output Shafts revolve in opposite directions.
- *: Use of Shear Pin or Torque Controlled Coupling is recommended.
- A: Input Horsepower rating is directly proportional to the Input HP rating at 1800 R.P.M. Ratio 5.2 to 1, Input R.P.M. -900. Input H.P. -24.45. The Torque is independent of the speed.

The above Ratings are for 8 to 10 hours daily operation with steady, non-shock loads. (Service Factor 1). For other service conditions apply proper service factors as shown on page 4.

NOTES

- S: Input and Output Shafts revolve in the same direction.
- R: Input and Output Shafts revolve in opposite directions.
- Use of Shear Pin or Torque Controlled Coupling is recommended.
- A: Input Horsepower rating is directly proportional to the input HP rating at 1800 R.P.M. Ratio 5.2 to 1, Input R.P.M. -900. Input H.P. -41.58. The Torque is independent of the speed.

The above Ratings are for 8 to 10 hours daily operation with steady, non-shock loads. (Service Factor 1). For other service conditions apply proper service factors as shown on page 4.

WINSMITH APPLICATION DATA CHECKLIST FOR SELECTING SPEED REDUCERS AND GEARMOTORS

REP		CUSTOMER		DATE	
A. Reducer Particula	ars:				
1 Size	2 Model	3. Ratio	4. Assy	5. Exact Mounting (if not clean	ear, send sketch)
Critical dimensions					
B. Drive Systems:					
	ver connected to unit?				
2. How is the unit co	onnected to the load?				
3 List all pertinent of	data on pulleys, sprocket	s, drums, etc			
4 List speed require	ements (input, output, vai	riation, conveyor velocities.			
C. Load on Reducer		24 C.			
1 Output torque rec	quired				(or)
4 If loads are in te	erms of weight, list mate	rials rubbing, sliding or re	olling against each other	so coefficient of friction can be e	stimated
5 Are there any la	rge inertia forces that	must be overcome in start	ing system?_If so, explain	n:	
-	***		200		
D. Type of Service:		en and	- Contract	55945 w 5755	ACCORDER.
				and/or impact	loading
E. Duty:					
the second of th					
Cycle time Does (2) reflect to	requent starts & stone?				
a boes (2) renect in	request starts a stops : _				
F. Environmental Co					
1. Ambient tempera					
2. Is unit for outdoo		Decree Transfer			
	dition of surroundings (
4. List any unusua	conditions that the u	nit is subjected to (heat,	water splash, etc)		_
G. Prime Mover:					
1 Capacity (speed	& HP or torque)			18 100 100 100	
2 Frame size	Market Banks Street			(Can the reducer	accept this size?)
A STATE OF THE PARTY OF THE PAR		nting dimensions			
		eeds?			
5. For internal com	bustion no cylinders			cycles	
H. Self-Locking:					
1. Must the unit bac	kdrive?				
2. Must the unit be	self-locking?			(If so, a brake	is recommended
I. Torque Control:					
1. What torque setti	ings are required?		Alarm	Shutoff	
	nd of slow speed shaft, w	hat is its direction?	CW	(or) CCW	
UNUSUAL CONDI	TIONS CONCERNING IN	STALLATION OR APPLIC	ATION		
THE R. P. LEWIS CO., LANSING	The second second				
-					

TERMS AND CONDITIONS

THE RECIPIENT OF THIS OFFER IS HEREIN CALLED BUYER AND PEERLESS-WINSMITH, INC. IS HEREIN CALLED SELLER. THE TERM PRODUCT SHALL INCLUDE, WITHOUT LIMITATION, GOODS, SERVICES, WORK AND DATA, EXPRESSLY OR IMPLIEDLY DELIVERED HEREUNDER AND ANY PART THEREOF.

1. CONTROLLING TERMS

The parties agree that there are no understandings, agreements or representations, express or implied, not specified herein, respecting this offer or sale, and that this instrument contains the entire agreement between Seller and Buyer. No course of prior dealing and no usage of the trade shall be relevant to supplement or to explain terms used in this agreement. All sales are expressly limited to, and the rights and liabilities of the parties shall be governed exclusively by, the terms and conditions herein. In the event any purchase order or offer from Buyer states terms additional to or different from those set forth herein, this document shall be deemed a notice of objection to such additional or different terms and a rejection thereof. Any acknowledgement or shipment of product by Seller to Buyer subsequent to Seller's receipt of a purchase order or offer from Buyer shall not be deemed to be an acceptance by Seller of an offer to contract on the basis of any Buyer's terms and conditions. Issuance of a purchase order or acceptance by Buyer of products shall be conclusive evidence of Buyer's acceptance of terms and conditions set forth herein as the sole controlling terms and conditions of the contract between Seller and Buyer.

2. FORCE MAJEUR

This order is accepted subject to delays due to conditions or forces beyond Seller's control including, but not limited to strikes, work stoppages, break down, fires, accidents, contingencies of transportation, storage or delivery, civil disturbances, shortage of labor and acts of God.

3. CREDIT

Buyer agrees to comply with the credit terms and accept deliveries as indicated; upon violation or default by Buyer, or upon bankruptcy or insolvency of Buyer, or by reason of the insecurity of Seller as to the ultimate collectibility of the purchase price as determined by Seller in its sole and unfettered discretion, Seller may, without notice to Buyer, delay or postpone the delivery of the Products; and Seller, at its option, is authorized to change the terms of payment to payment in full in advance of shipment of the entire undelivered balance of said Products. In the event of default by Buyer in the payment of the purchase price or otherwise, Seller after demand, may sell any undelivered Products on hand for the account of Buyer and apply such proceeds as a credit against the contract purchase price, and Buyer agrees to pay balance then due to Seller on demand. Such balance shall bear interest at the highest legal contract rate from the date of demand. Buyer agrees to pay all expenses, including but not limited to, storage and shipment costs, court costs, attorney's fees and other expenses of litigation or preparation therefore, resulting from any default by Buyer in any of the terms thereof. Should Buyer default hereunder prior to the manufacture of all Products ordered hereunder, Buyer agrees to pay as liquidated damages the contract price for such unproduced or partially produced Products, less Seller's then unexpended standard costs for materials, direct labor and variable overhead with respect to the Products as in effect at the time of default. Certification of such standard costs by Seller's independent public accountants shall be conclusive on the parties hereto.

4. CHANGES

Orders arising hereunder may be amended by written Change Order signed by the parties, setting forth the particular changes to be made and the effect of such changes on the price and time of delivery. A charge will be made for changes in drawings and/or specifications after Buyer and Seller have previously agreed upon same. The total charge for such change will include order repossessing costs, additional material and labor costs. Seller will advise the total charge for such changes after receipt of written authorization or direction for such changes. In the event the changes are required as a result of an error on the part of the Seller, no charge will be made.

5. FAIR LABOR STANDARDS ACT

Seller hereby certifies that the Products covered by this order were produced in compliance with the Fair Labor Standards Act of 1938, as amended, and of regulations and orders issued thereunder.

6. TAXES

All applicable taxes of every kind or nature now or hereafter assessed which are or may become effective before this order is completed may be added to the invoice price.

7. BUYER'S REPRESENTATIONS AND INDEMNITY

Buyer represents and warrants that all trademarks, copyright materials, and patents submitted in connection with this order and that the use thereof in accordance with this order will not violate any federal, state or municipal law or regulation, and Buyer agrees to indemnify and hold harmless Seller, its agents, successors and assigns against any suits, loss, claim, demand, liabilities, costs and expenses (including attorneys' fees) arising out of any breach or alleged breach hereof.

8. TERMS

All Sales are made F.O.B. Seller's plant, unless otherwise specified on the face of the Seller's acknowledgement. Payment terms are net 30 days unless otherwise specified on the face of the Seller's acknowledgement. Delivery of all or any part of the Products to a carrier for shipment to Buyer or to a consignee designated by Buyer shall constitute delivery to Buyer and shall pass and vest title to and risk of loss of such goods to Buyer in the event of loss or damage to Products after delivery to a carrier. Seller will, upon request of Buyer, assist in filing claims against the carrier.

9. CANCELLATION-SUSPENSION

Orders for Products received by Seller are accepted subject to the understanding that orders may be cancelled by Seller because of Seller's inability to obtain all or part of the materials necessary to complete the order at prices in effect on the date hereof or by reason of other causes beyond its reasonable control. Cancellation or suspension of orders may be made only upon Sellers written approval. A charge will be made for cancellations and/or suspensions after Buyer and Seller have previously agreed upon same. Seller will advise the total charge for such cancellations and/or suspensions. Buyer agrees to pay such charges, including but not limited to, storage and shipment costs, costs of producing non-standard components, costs of purchasing non-returnable materials, cancellation costs imposed on the Seller by its suppliers, engineering costs and any other costs resulting from cancellation and/or suspension of orders by the Buyer. Certification of such costs by Seller's independent public accountants shall be conclusive on the parties hereto.

10. TOOLS, DIES AND MOLDS

Any and all equipment, including tools, jigs, dies, plates, molds, fixtures, materials, equipment, drawings, designs and other information, which Seller uses, constructs or acquires for Buyer for the purpose of filling this order shall be and remain Seller's property.

11. DELIVERY

Buyer agrees to accept delivery of all goods included in this order within the time specified on the face hereof. No extension of the delivery period shall relieve Buyer from the obligation to accept the goods included in this order. Partial shipment of goods will be made by Seller when ready and invoiced.

12. CLAIMS OR RETURNS

All claims must be made in writing and delivered to Seller within ten (10) days after receipt of the goods and must be accompanied by Seller's packing list and freight bill. Failure of Buyer to make such claims within ten (10) days will constitute a waiver by Buyer or such claims.

In the event of the receipt of notice of such claims, Seller agrees to forward definitive shipping instructions to Buyer or to send a representative of Seller to Buyer's facilities to review shipment and make any necessary adjustments. No return of the goods pursuant to this paragraph shall be made for any purpose without the prior written consent of Seller. Transportation charges on all goods returned after receipt of Seller's Authorization must be prepaid. Any goods returned by Buyer without Seller's consent shall be held for the account of Buyer.

13. CHARGES

Past due accounts are subject to late payment charges of $1\frac{1}{2}$ % per month or such lesser amounts are legally permissible.

14. SOLVENCY

Buyer, by these presents and the acceptance of the Products, represents and warrants that Buyer is solvent and able to pay for the Products in accordance with the terms of sale.

15. WARRANTIES

The Products manufactured by Seller are warranted by Seller as follows: (a) Seller has the right to sell the Products, (b) Buyer and its customers shall have the right to enjoy the Products free of claims of third persons against the Seller, and (c) the Products shall be free from manufacturing defects in material and workmanship under normal use and service for a period of twenty-four (24) months from date of shipment. This warranty does not apply to any Products which have been tampered with, improperly stored, exposed to heat or moisture or otherwise subject to misuse or abuse.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, WARRANTIES OR MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE.

Except as otherwise agreed in writing in each specific instance, the obligation of Seller is limited: (i) in the case of any material breach of the warranties set forth in subparagraphs (a) and (b) above, to the reimbursement of the price paid by Buyer or its customer for such Products: and (ii) in the case of any breach of the warranty set forth in subparagraph (c) above, to any of the following (at Seller's option): refund of the purchase price or replacement of any such defective Product without charge other than for transportation.

SELLER SHALL NOT IN ANY EVENT BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES resulting from any use or failure of the Products, including, without limitation, liability for loss of time to, profits or products of, Buyer or the user for any labor or any other expense, damage or loss occasioned by any such defect.

Simultaneously with the delivery by Dealer to its customer of any Products purchased by Buyer from Seller, Buyer shall deliver therewith such printed warranties and disclaimers of warranties in respect to said merchandise as shall be furnished by Seller to Buyer or packed with said merchandise for that purpose. Buyer further agrees that the obligations of Seller to Buyer with respect to all Products purchased by Buyer from Seller shall be as hereinabove set forth. In no event shall Seller's obligation for breach of warranty exceed the purchase price of product.

16. ARBITRATION


Any controversy arising under, or in any way related to this order or the subject matter hereof shall be settled by arbitration by three disinterested arbitrators in the City and State of New York, and under the laws of said State, in accordance with rules of the American Arbitration Association then obtaining. All costs of such arbitration, and any proceedings directly or indirectly related thereto, including reasonable attorney's fees, shall be paid by the party against whom the arbitrators shall render their award or as otherwise directed by the arbitrators.

17. LAW

The contract shall be governed and construed under the State where the products are manufactured.

REV. 12/99

The inside story

Winsmith planetary reducers combine enormous load capacity, smooth, quiet operation, and long operating life in a strikingly compact package. We achieve that combination by mounting our gears in a planetary element that "floats" the gears, thereby guaranteeing simultaneous contact of all driving teeth and perfect multiple path load distribution. But that's just one of many Winsmith features. Together they add up to a reducer that looks like the others, but operates like nothing but a Winsmith!

W

WINSMITH DISTRICT OFFICES

ALABAMA

See Georgia

CALIFORNIA

Los Angeles (Santa Fe Springs)
■ Service Center
562/404-0304
FAX 562/404-8060
San Francisco
(Brentwood)
925/634-2818
FAX 925/634-4314

COLORADO

Lakewood 303/205-1922 FAX 303/205-1477

FLORIDA

Clermont 352/243-7517 FAX 352/243-7518

GEORGIA

Atlanta (Alpharetta) 770/772-7270 FAX 770/772-7277

ILLINOIS

Chicago (Downers Grove)
Service Center
630/629-3434
FAX 630/629-1010

INDIANA

See Cincinnati, OH

KANSAS

Kansas City 816/524-2010 FAX 816/524-2944

KENTUCKY

See Cincinnati. OH

MASSACHUSETTS

See Rhode Island

MICHIGAN

Detroit 734/878-9050 FAX 734/878-9051

MINNESOTA

Plymouth 763/559-1021 FAX 763/559-6552

MISSOURI

Kansas City 816/524-2010 FAX 816/524-2944 St. Louis 314/576-1488 FAX 314/576-0433

NEW JERSEY

See Philadelphia, PA

NEW YORK

Springville (Factory) Peerless-Winsmith 716/592-9310 FAX 716/592-9546

NEW YORK (cont.)

New York City See Philadelphia, PA

NORTH CAROLINA

See Georgia

OHIO

Cleveland (Wickliffe) 440/585-2121 FAX 440/585-2122 Cincinnati 513/791-5009 FAX 513/791-4717

OKLAHOMA

See Texas

OREGON

Portland
Service Center
503/227-6638
FAX 503/227-5413

PENNSYLVANIA

Harrisburg/Philadelphia Sales Office 315/684-3553 FAX 315/684-3562 Western PA Sales Office 716/751-0134 FAX 716/751-4051

RHODE ISLAND

Warwick 401/732-4570 FAX 401/732-4583

SOUTH CAROLINA

See Georgia

TENNESSEE

See Georgia

TEXAS

Dallas/Houston
Service Center
1-800/383-5918
FAX 877/867-5386

UTAH

See Colorado

VIRGINIA

Vinton 540/890-7756 FAX 540/890-7855

WISCONSIN

Cedarburg 262/375-4465 FAX 262/375-4175

BRITISH COLUMBIA

See Springville, NY

ONTARIO

Toronto (Mississauga)
Service Center
905/828-1222
FAX 905/828-1225

WINSMITH SERVICE CENTERS

WINSMITH®'s Regional Service Centers, shown on the map, can provide prompt solutions to your unique delivery requirements. Each Service Center is fully stocked with the necessary components and assemblies to provide a wide variety of finished units with the same high quality that you expect from WINSMITH's manufacturing plants.

HBD Industries Inc. and its subsidiaries cannot accept responsibility for possible errors in catalogues, brochures, other printed materials, and website information, and may change, delete, add to or otherwise modify such information without notice. HBD reserves the right to alter its products without notice, including products already on order, provided that such alteration can be made without changes being necessary in specifications already agreed to. All trademarks in this material are the property of the HBD Industries Inc., or its subsidiaries. The HBD and HBD brands logotype, are trademarks of HBD Industries Inc. All rights reserved.

DISTRIBUTED BY:

HBD/WINSMITH, INC. 172 EATON STREET SPRINGVILLE, NY 14141-1197 USA TEL: 1 (716) 592-9310 TEL: 1 (716) 592-9546 www.winsmith.com